146 research outputs found

    Auroral Cluster: A Space Physics Mission for Multiple, Electronically Tethered Small Satellites

    Get PDF
    Auroral Cluster is a space physics mission that has been identified by the NASA Space Physics Strategic Implementation Study as a candidate for flight in the next decade. Auroral Cluster will employ multiple spacecraft outfitted with similar complements of science instruments allowing simultaneous multipoint plasma measurements in the Earth\u27s auroral regions. Co-orbiting small satellites (mass \u3c 400 kg each) that are electronically tethered to share distributed spacecraft systems represent an efficient approach for achieving the science goals of the Auroral Cluster mission. Multisatellite missions represent a new trend in gathering space science data and pose many new and difficult challenges for the space systems engineer. The results of an Auroral Cluster feasibility study, which discusses a variety of mission trade-offs, are presented. A discussion of the science background and mission goals is used to identify the technical drivers for the design of the multiple spacecraft system. A mission plan and some considerations for a Auroral Cluster satellite design are presented. Special consideration is given to the spacecraft subsystems that will allow the system to be operated as a network of electronically tethered interdependent small satellites. These subsystems include attitude determination, spatial separation knowledge and control, data storage, and intersatellite communication

    On the reheating stage after inflation

    Full text link
    We point out that inflaton decay products acquire plasma masses during the reheating phase following inflation. The plasma masses may render inflaton decay kinematicaly forbidden, causing the temperature to remain frozen for a period at a plateau value. We show that the final reheating temperature may be uniquely determined by the inflaton mass, and may not depend on its coupling. Our findings have important implications for the thermal production of dangerous relics during reheating (e.g., gravitinos), for extracting bounds on particle physics models of inflation from Cosmic Microwave Background anisotropy data, for the production of massive dark matter candidates during reheating, and for models of baryogenesis or leptogensis where massive particles are produced during reheating.Comment: 8 pages, 2 figures. Submitted for publication in Phys. Rev.

    Production and dilution of gravitinos by modulus decay

    Full text link
    We study the cosmological consequences of generic scalar fields like moduli which decay only through gravitationally suppressed interactions. We consider a new production mechanism of gravitinos from moduli decay, which might be more effective than previously known mechanisms, and calculate the final gravitino-to-entropy ratio to compare with the constraints imposed by successful big bang nucleosynthesis (BBN) etc., taking possible hadronic decays of gravitinos into account. We find the modulus mass smaller than ∌104\sim 10^4 TeV is excluded. On the other hand, inflation models with high reheating temperatures TR,inf∌1016T_{R,\rm inf} \sim 10^{16} GeV can be compatible with BBN thanks to the late-time entropy production from the moduli decay if model parameters are appropriately chosen.Comment: 18 pages, 4 figures, to appear in Phys. Rev.

    Big Bang nucleosynthesis and cosmic microwave background constraints on the time variation of the Higgs vacuum expectation value

    Get PDF
    We derive constraints on the time variation of the Higgs vacuum expectation value through the effects on Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB). In the former case, we include the (previously-neglected) effect of the change in the deuteron binding energy, which alters both the 4^4He and deuterium abundances significantly. We find that the current BBN limits on the relative change in \higgs are −(0.6−0.7)×10−2/<(1.5−2.0)×10−2-(0.6 - 0.7) \times 10^{-2} / < (1.5 - 2.0) \times 10^{-2}, where the exact limits depend on the model we choose for the dependence of the deuteron binding energy on \higgs.The limits from the current CMB data are much weaker.Comment: 5 pages including 5 figures, accepted for publication in Phys. Rev.

    Generalized Global Defect Solutions

    Get PDF
    We investigate the presence of defect structures in generalized models described by real scalar field in (1,1)(1,1) space-time dimensions. We work with two distinct generalizations, one in the form of a product of functions of the field and its derivative, and the other as a sum. We search for static solutions and study the corresponding linear stability on general grounds. We illustrate the results with several examples, where we find stable defect structures of modified profile. In particular, we show how the new defect solutions may give rise to evolutions not present in the standard scenario in higher spatial dimensions.Comment: RevTex, 10 pages, 2 figures; version to appear in EPJ

    How to optimize nonlinear force-free coronal magnetic field extrapolations from SDO/HMI vector magnetograms?

    Full text link
    The SDO/HMI instruments provide photospheric vector magnetograms with a high spatial and temporal resolution. Our intention is to model the coronal magnetic field above active regions with the help of a nonlinear force-free extrapolation code. Our code is based on an optimization principle and has been tested extensively with semi-analytic and numeric equilibria and been applied before to vector magnetograms from Hinode and ground based observations. Recently we implemented a new version which takes measurement errors in photospheric vector magnetograms into account. Photospheric field measurements are often due to measurement errors and finite nonmagnetic forces inconsistent as a boundary for a force-free field in the corona. In order to deal with these uncertainties, we developed two improvements: 1.) Preprocessing of the surface measurements in order to make them compatible with a force-free field 2.) The new code keeps a balance between the force-free constraint and deviation from the photospheric field measurements. Both methods contain free parameters, which have to be optimized for use with data from SDO/HMI. Within this work we describe the corresponding analysis method and evaluate the force-free equilibria by means of how well force-freeness and solenoidal conditions are fulfilled, the angle between magnetic field and electric current and by comparing projections of magnetic field lines with coronal images from SDO/AIA. We also compute the available free magnetic energy and discuss the potential influence of control parameters.Comment: 17 Pages, 6 Figures, Sol. Phys., accepte

    Limits on the gravity wave contribution to microwave anisotropies

    Get PDF
    We present limits on the fraction of large angle microwave anisotropies which could come from tensor perturbations. We use the COBE results as well as smaller scale CMB observations, measurements of galaxy correlations, abundances of galaxy clusters, and Lyman alpha absorption cloud statistics. Our aim is to provide conservative limits on the tensor-to-scalar ratio for standard inflationary models. For power-law inflation, for example, we find T/S<0.52 at 95% confidence, with a similar constraint for phi^p potentials. However, for models with tensor amplitude unrelated to the scalar spectral index it is still currently possible to have T/S>1.Comment: 23 pages, 7 figures, accepted for publication in Phys. Rev. D. Calculations extended to blue spectral index, Fig. 6 added, discussion of results expande

    Modelling and Interpreting The Effects of Spatial Resolution on Solar Magnetic Field Maps

    Full text link
    Different methods for simulating the effects of spatial resolution on magnetic field maps are compared, including those commonly used for inter-instrument comparisons. The investigation first uses synthetic data, and the results are confirmed with {\it Hinode}/SpectroPolarimeter data. Four methods are examined, one which manipulates the Stokes spectra to simulate spatial-resolution degradation, and three "post-facto" methods where the magnetic field maps are manipulated directly. Throughout, statistical comparisons of the degraded maps with the originals serve to quantify the outcomes. Overall, we find that areas with inferred magnetic fill fractions close to unity may be insensitive to optical spatial resolution; areas of sub-unity fill fractions are very sensitive. Trends with worsening spatial resolution can include increased average field strength, lower total flux, and a field vector oriented closer to the line of sight. Further-derived quantities such as vertical current density show variations even in areas of high average magnetic fill-fraction. In short, unresolved maps fail to represent the distribution of the underlying unresolved fields, and the "post-facto" methods generally do not reproduce the effects of a smaller telescope aperture. It is argued that selecting a method in order to reconcile disparate spatial resolution effects should depend on the goal, as one method may better preserve the field distribution, while another can reproduce spatial resolution degradation. The results presented should help direct future inter-instrument comparisons.Comment: Accepted for publication in Solar Physics. The final publication (including full-resolution figures) will be available at http://www.springerlink.co

    Cosmic Microwave Background constraint on residual annihilations of relic particles

    Get PDF
    Energy injected into the Cosmic Microwave Background at redshifts z<10^6 will distort its spectrum permanently. In this paper we discuss the distortion caused by annihilations of relic particles. We use the observational bounds on deviations from a Planck spectrum to constrain a combination of annihilation cross section, mass, and abundance. For particles with (s-wave) annihilation cross section, =\sigma_0, the bound is f[(\sigma_0/6e-27cm^3/s)(\Omega_{X\bar{X}}h^2)^2]/(m_X/MeV)<0.2, where m_X is the particle mass, \Omega_{X\bar{X}} is the fraction of the critical density the particle and its antiparticle contribute if they survive to the present time, h=H_0/(100km/s/Mpc), H_0 is the Hubble constant, and f is the fraction of the annihilation energy that interacts electromagnetically. We also compute the less stringent limits for p-wave annihilation. We update other bounds on residual annihilations and compare them to our CMB bound.Comment: submitted to Phys. Rev.

    Properties of high-frequency wave power halos around active regions: an analysis of multi-height data from HMI and AIA onboard SDO

    Full text link
    We study properties of waves of frequencies above the photospheric acoustic cut-off of ≈\approx5.3 mHz, around four active regions, through spatial maps of their power estimated using data from Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard Solar Dynamics Observatory (SDO). The wavelength channels 1600 {\AA} and 1700 {\AA} from AIA are now known to capture clear oscillation signals due to helioseismic p modes as well as waves propagating up through to the chromosphere. Here we study in detail, in comparison with HMI Doppler data, properties of the power maps, especially the so called 'acoustic halos' seen around active regions, as a function of wave frequencies, inclination and strength of magnetic field (derived from the vector field observations by HMI) and observation height. We infer possible signatures of (magneto-)acoustic wave refraction from the observation height dependent changes, and hence due to changing magnetic strength and geometry, in the dependences of power maps on the photospheric magnetic quantities. We discuss the implications for theories of p mode absorption and mode conversions by the magnetic field.Comment: 22 pages, 12 figures, Accepted by journal Solar Physic
    • 

    corecore